1706PD **ESMO** Congress 2017

Analysis of stroma and immune-related gene expression patterns during breast cancer (BC) progression

<u>uciana Molinero1, Joan Albanell^{2,3,4}, Hartmut Koeppen1, Eduardo Martínez de Dueñas^{2,5}, Dan Halligan⁶, Ángel Guerrero-Zotano^{2,7}, Jose Ignacio Chacón^{2,8}, Ramón Pérez^{2,9}, Silvia Antolín^{2,10}, Isabel Blancas^{2,11}, Montserrat Muñoz^{2,12}</u> Amparo Oltra^{2,13}, María Helena López-Ceballos^{2,14}, María Sánchez-Aragó², Rosalía Caballero², Eva Carrasco², Ana María González-Angulo¹⁵, Ana Lluch^{2,3,16}, Elizabeth A. Mittendorf¹⁵, Federico Rojo^{2,3,17} ¹Genentech, San Francisco, CA; ²GEICAM (Spanish Breast Cancer Group), Madrid, Spain; ³Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Spain; ⁴Hospital del Mar, Barcelona, Barcelona, Barcelona, Barcelona, Spain; ⁵Hospital del Mar, Barcelona, Spain; ⁵Hospital Provincial de Castellón, Castellón, Castellón, Spain; ⁶Fios Genomics, Edinburgh, UK; ⁷Instituto Valenciano de Oncología, CIBERONC-ISCIII, Spain; ⁴Hospital del Mar, Barcelona, Barcelona, Barcelona, Spain; ⁵Hospital del Mar, Barcelona, Spain; ⁴Hospital del Mar, Barcelona, Spain; ⁵Hospital del Mar, Barcelona, Spain; ⁴Hospital del Mar, 'alencia, Spain; ⁸Hospital Virgen de la Salud, Toledo, Spain; ⁹Hospital Universitario Quirón de Madrid, Madrid, Spain; ¹²Hospital Clínic i Provincial, Barcelona, Spain; ¹³Hospital Virgen de los Lirios, Alicante, Spain; ¹⁴Hospital San Pedro de Alcántara, Cáceres, Spain; ¹⁵The University of Texas MD Anderson Cancer Center, Houston, TX, ¹⁶Hospital Clínico Universitario de Valencia, Valencia, Spain, ¹⁷Fundación Jiménez Díaz, Madrid, Spain

INTRODUCTION

- evidences Despite accumulating sustaining that immune cells are generic constituents of tumors (1), the role that the immune system plays in tumorigenesis is still a matter of debate.
- Characterization the immune of during phenotype of tumors progression could aid at developing patient-tailored therapy strategies.
- to **identify** sought Here, we differences in the expression pattern of immune-related genes comparing paired samples of tumors and primary breast metastasis patients from participant in the GEICAM/2009-03 (ConvertHER) study.

OBJECTIVES

- characterize the 0 immune phenotype during breast cancer progression in terms of:
 - ✓ PD-L1 expression and
 - ✓ Immune gene expression analysis.

MATERIALS AND METHODS

We analyzed in 44 matched pairs, 1 primary and 1 metastatic non-matched tissues from 46 patients participant in the ConvertHER study, **PD-L1 expression** by immunohistochemistry (IHC) by using a specific antibody for tumor and immune cells detection (2) (Figure 1).

Figure 1. Representative IHC for PD-L1 antibody (SP142 clone) in breast cancer tissue. (A). Primary BC with less than 1% of tumor infiltrating immune cells (IC) expressing PD-L1 (PD-L1 IC<1%) (B) Primary BC with more than 1% IC expressing PD-L1 (PD-L1 IC≥1%).

- Differential gene expression between 60 matched primary/metastases pairs was analyzed in a customized nanostring (enriched in immune-related genes).
- Significant features (p-value < 0.05) were assessed for functional enrichment of KEGG pathways and GO terms.

CONCLUSIONS

- ✓ PD-L1 expression and immune gene signatures did not significantly change between primary and metastatic BC ✓ However, metastasis had decreased TGFb-activated fibroblasts, innate inflammation and Notch pathway signatures
- ✓ The results in the current study need to be further corroborated in an independent dataset

✓ Prevalence of PD-L1 in immune infiltrating cells (IC) was lowest in ER+HER2- specimens (Figure 2). PDL1 expression in tumor cells (TC) was observed in 1/90 samples.

No significant changes in PD-L1 IC were observed between matched pairs (Figures 3 and 4).

REFERENCES

1. Fridman et. al. Nat Rev Clin Oncol. (2017) Jul 25 2.Herbst et. al. Nature (2014). 515(7528): 563-567

GEicam

spanish breast cancer group

RESULTS

✓ **No changes** in pre-specified immune signatures were observed (Figure 5). ✓ Metastases had decreased Notch pathway, innate inflammation and TGFbactivated fibroblasts signatures (Figure 6).

Name	Pvalue
SMAD protein signal transduction	0.00271869
negative regulation of protein autophosphorylation	0.00271869
mature B cell differentiation involved in immune response	0.00271869
mature B cell differentiation	0.00271869
positive regulation of interferon-alpha production	0.00271869
MDA-5 signaling pathway	0.00271869
antimicrobial humoral response	0.00052652
antibacterial humoral response	0.00788276
regulation of cardiac muscle contraction	0.00788276
cardiac muscle contraction	0.00788276
regulation of striated muscle contraction	0.00788276
release of sequestered calcium ion into cytosol by sarcopla	s 0.00788276
sarcoplasmic reticulum calcium ion transport	0.00788276
cytoplasmic pattern recognition receptor signaling pathway	0.00788276
Ras GTPase activator activity	0.00241104
response to mineralocorticoid	0.00244307
membrane depolarization	0.00244307
insulin receptor binding	0.01511404
insulin-like growth factor binding	0.01511404
Rho GTPase activator activity	0.01511404
positive regulation of lipid catabolic process	0.01523899
positive regulation of steroid biosynthetic process	0.01523899
positive regulation of steroid metabolic process	0.01523899
response to corticosterone	0.01523899
negative regulation of Ras protein signal transduction	0.01523899
negative regulation of small GTPase mediated signal transc	0.01523899
axon regeneration	0.01523899
negative regulation of myeloid cell apoptotic process	0.01523899
neuron projection regeneration	0.01523899
negative regulation by host of viral transcription	0.01523899
negative regulation of viral transcription	0.01523899
regulation of protein autophosphorylation	0.01523899
regulation of monocyte differentiation	0.01523899
glial cell migration	0.01523899
positive regulation of type I interferon-mediated signaling	0.01523899
macrophage apoptotic process	0.01523899
cellular response to dsRNA	0.01523899

ACKNOWLEDGMENTS

We thank the investigators and patients of the ConvertHER study (GEICAM/2009-03), as well as the staff of GEICAM.

This presentation is the intellectual property of the authors. Contact at: secretaria-cientifica@geicam.org for questions and permissio to reprint and/or distribute

